Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.694
Filtrar
1.
Cell Stem Cell ; 31(4): 554-569.e17, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579685

RESUMO

The YAP/Hippo pathway is an organ growth and size regulation rheostat safeguarding multiple tissue stem cell compartments. LATS kinases phosphorylate and thereby inactivate YAP, thus representing a potential direct drug target for promoting tissue regeneration. Here, we report the identification and characterization of the selective small-molecule LATS kinase inhibitor NIBR-LTSi. NIBR-LTSi activates YAP signaling, shows good oral bioavailability, and expands organoids derived from several mouse and human tissues. In tissue stem cells, NIBR-LTSi promotes proliferation, maintains stemness, and blocks differentiation in vitro and in vivo. NIBR-LTSi accelerates liver regeneration following extended hepatectomy in mice. However, increased proliferation and cell dedifferentiation in multiple organs prevent prolonged systemic LATS inhibition, thus limiting potential therapeutic benefit. Together, we report a selective LATS kinase inhibitor agonizing YAP signaling and promoting tissue regeneration in vitro and in vivo, enabling future research on the regenerative potential of the YAP/Hippo pathway.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas de Sinalização YAP , Animais , Humanos , Camundongos , Proliferação de Células , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/agonistas , Proteínas de Sinalização YAP/efeitos dos fármacos , Proteínas de Sinalização YAP/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
2.
Cell Death Dis ; 15(4): 240, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561354

RESUMO

Abnormal lipid metabolism and lipid accumulation are characteristic hallmarks of renal cell carcinoma (RCC). While there is prior evidence closely linking such lipid accumulation within RCC cells and consequent tumorigenesis, the mechanisms underlying this process remain incompletely understood. In this study, a series of bioinformatics analyses were initially performed by screening RCC databases and gene sets, ultimately leading to the identification of TRIB3 as an oncogene that functions as a central regulator of lipid metabolism. TRIB3 overexpression was observed in both RCC patient tumor tissues and cell lines, and this upregulation was correlated with a worse RCC patient prognosis. When TRIB3 was knocked down, this resulted in a reduction in lipid accumulation and the consequent induction of endoplasmic reticulum (ER) stress-related apoptotic cell death. At the molecular level, interactions between TRIB3 and PLIN2 were found to abrogate TEB4-mediated PLIN2 ubiquitination and consequent degradation, thus maintaining higher PLIN2 expression levels. This simultaneously helps facilitate the accumulation of lipids while preserving ER homeostasis, thus driving accelerated RCC tumor progression. This TRIB3-PLIN2 axis thus represents a promising new target for efforts to treat RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Humanos , Carcinoma de Células Renais/metabolismo , Gotículas Lipídicas/metabolismo , Estresse do Retículo Endoplasmático/genética , Neoplasias Renais/metabolismo , Lipídeos , Proteínas Repressoras/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Perilipina-2/genética , Perilipina-2/metabolismo
3.
Cell Death Dis ; 15(3): 178, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429254

RESUMO

Tribbles pseudokinase 3 (TRIB3) has been identified recently as a novel oncogene in several cancers. Still, further extensive research is imperative to elucidate its function and the molecular mechanisms underlying its involvement in the progression of head and neck squamous cell carcinoma (HNSCC). In our study, we found that TRIB3 silencing significantly promoted cell death by inducing ferroptosis. The interaction of TRIB3 with Transcription Factor 4 (TCF4) and ß-catenin created a heterotrimeric complex, which directly interacts with the ALOXE3 promoter, detrimentally impacting its activation. The consequential partial neutralization of ferroptosis induced by TRIB3 deficiency is observed through the implementation of ALOXE3 knockdown. Furthermore, the study demonstrated that the molecular inhibitor hesperidin, targeting TRIB3, not only reduced cell malignancy but also induced ferroptosis, thereby suppressing tumor growth. Overall, our findings unequivocally validate the proposition that TRIB3 deficiency precipitates the iron death mechanism, thereby indicating that the strategic targeting of TRIB3 could emerge as an innovative therapeutic strategy for HNSCC.


Assuntos
Ferroptose , Neoplasias de Cabeça e Pescoço , Proteínas Serina-Treonina Quinases , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Proteínas de Ciclo Celular/metabolismo , Ferroptose/genética , Neoplasias de Cabeça e Pescoço/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
4.
J Virol ; 98(2): e0194823, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38299843

RESUMO

The eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation on serine 209. In a recent study, by two rounds of TMT relative quantitative proteomics, we found that phosphorylated eIF4E (p-eIF4E) favors the translation of selected mRNAs, and the encoded proteins are mainly involved in ECM-receptor, focal adhesion, and PI3K-Akt signaling. The current paper is focused on the relationship between p-eIF4E and the downstream host cell proteins, and their presumed effect on efficient entry of PEDV. We found that the depletion of membrane-residential factor TSPAN3, CD63, and ITGB2 significantly inhibited viral invasion of PEDV, and reduced the entry of pseudotyped particles PEDV-pp, SARS-CoV-pp, and SARS-CoV-2-pp. The specific antibodies of TSPAN3, CD63, and ITGB2 blocked the adsorption of PEDV into host cells. Moreover, we detected that eIF4E phosphorylation was increased at 1 h after PEDV infection, in accordance with the expression of TSPAN3, CD63, and ITGB2. Similar trends appeared in the intestines of piglets in the early stage of PEDV challenge. Compared with Vero cells, S209A-Vero cells in which eIF4E cannot be phosphorylated showed a decrease of invading PEDV virions. MNK kinase inhibitor blocked PEDV invasion, as well as reduced the accumulation of TSPAN3, CD63, and ITGB2. Further study showed that the ERK-MNK pathway was responsible for the regulation of PEDV-induced early phosphorylation of eIF4E. This paper demonstrates for the first time the connections among p-eIF4E stimulation and membrane-residential host factors. Our findings also enrich the understanding of the biological function of phosphorylated eIF4E during the viral life cycle.IMPORTANCEThe eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation. In our previous study, several host factors susceptible to a high level of p-eIF4E were found to be conducive to viral infection by coronavirus PEDV. The current paper is focused on cell membrane-residential factors, which are involved in signal pathways that are sensitive to phosphorylated eIF4E. We found that the ERK-MNK pathway was activated, which resulted in the stimulation of phosphorylation of eIF4E in early PEDV infection. Phospho-eIF4E promoted the viral invasion of PEDV by upregulating the expression of host factors TSPAN3, CD63, and ITGB2 at the translation level rather than at the transcription level. Moreover, TSPAN3, CD63, or ITGB2 facilitates the efficient entry of coronavirus SARS-CoV, SARS-CoV-2, and HCoV-OC43. Our findings broaden our insights into the dynamic phosphorylation of eIF4E during the viral life cycle, and provide further evidence that phosphorylated eIF4E regulates selective translation of host mRNA.


Assuntos
Membrana Celular , Fator de Iniciação 4E em Eucariotos , Vírus da Diarreia Epidêmica Suína , Biossíntese de Proteínas , Internalização do Vírus , Animais , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/virologia , Chlorocebus aethiops , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Cadeias beta de Integrinas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Vírus da Diarreia Epidêmica Suína/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos , Tetraspaninas/metabolismo , Células Vero
5.
Bioorg Med Chem ; 100: 117619, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38320389

RESUMO

A structure-activity relationship study performed on 1H-pyrrolo[3,2-g]isoquinoline scaffold identified new haspin inhibitors with nanomolar potencies and selectivity indices (SI) over 6 (inhibitory potency evaluated against 8 protein kinases). Compound 22 was the most active of the series (haspin IC50 = 76 nM). Cellular evaluation of 22 confirmed its activity for endogenous haspin in U-2 OS cells and its anti-proliferative activity against various cell lines. In addition, the binding mode of analog 22 in complex with haspin was determined by X-ray crystallography.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Pirróis , Inibidores de Proteínas Quinases/química , Pirróis/química , Relação Estrutura-Atividade , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Isoquinolinas/química , Isoquinolinas/farmacologia
6.
Eur J Med Chem ; 265: 116115, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38199166

RESUMO

Polo-like kinase 4 (PLK4), a highly conserved serine/threonine kinase, masterfully regulates centriole duplication in a spatiotemporal manner to ensure the fidelity of centrosome duplication and proper mitosis. Abnormal expression of PLK4 contributes to genomic instability and associates with a poor prognosis in cancer. Inhibition of PLK4 is demonstrated to exhibit significant efficacy against various types of human cancers, further highlighting its potential as a promising therapeutic target for cancer treatment. As such, numerous small-molecule inhibitors with distinct chemical scaffolds targeting PLK4 have been extensively investigated for the treatment of different human cancers, with several undergoing clinical evaluation (e.g., CFI-400945). Here, we review the structure, distribution, and biological functions of PLK4, encapsulate its intricate regulatory mechanisms of expression, and highlighting its multifaceted roles in cancer development and metastasis. Moreover, the recent advancements of PLK4 inhibitors in patent or literature are summarized, and their therapeutic potential as monotherapies or combination therapies with other anticancer agents are also discussed.


Assuntos
Neoplasias , 60687 , Humanos , Ciclo Celular , Mitose , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , 60687/antagonistas & inibidores , 60687/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/efeitos dos fármacos
7.
Curr Opin Lipidol ; 35(2): 51-57, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236937

RESUMO

PURPOSE OF REVIEW: Human genetics studies have sparked great interest in the pseudokinase Tribbles homolog 1, as variant at the TRIB1 gene locus were robustly linked to several cardiometabolic traits, including plasma lipids and coronary artery disease. In this review, we summarize recent findings from mouse models that investigated the function of hepatic and adipocyte Trib1 in lipid metabolism and its role in atherosclerosis. RECENT FINDINGS: Studies in atherosclerosis prone low-density lipoprotein (LDL)-receptor knockout mice suggested that systemic Trib1 -deficiency promotes atherosclerotic lesion formation through the modulation of plasma lipids and inflammation. Further, investigations in mice with hepatocyte specific deletion of Trib1 identified a novel role in the catabolism of apoB-containing lipoproteins via regulation of the LDL-receptor. Moreover, recent studies on Trib1 in adipocytes uncovered critical functions in adipose tissue biology, including the regulation of plasma lipid and adiponectin levels and the response to ß3-adrenergic receptor activation. SUMMARY: Functional studies in mice have expanded our understanding of how Trib1 contributes to various aspects of cardiometabolic diseases. They support the notion that Trib1 exerts tissue-specific effects, which can result in opposing effects on cardiometabolic traits. Additional studies are required to fully elucidate the molecular mechanisms underlying the cellular and systemic effects of Trib1 .


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Humanos , Camundongos , Animais , Fígado/metabolismo , Doença da Artéria Coronariana/genética , Lipoproteínas/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Adipócitos , Proteínas Serina-Treonina Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
8.
J Hepatol ; 80(5): 778-791, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38237865

RESUMO

BACKGROUND & AIMS: Endoplasmic reticulum (ER) stress of hepatocytes plays a causative role in non-alcoholic fatty liver disease (NAFLD). Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. Whether ER stress regulates HNF4α expression remains unknown. The aim of this study was to delineate the machinery of HNF4α protein degradation and explore a therapeutic strategy based on protecting HNF4α stability during NAFLD progression. METHODS: Correlation of HNF4α and tribbles homologue 3 (TRIB3), an ER stress sensor, was evaluated in human and mouse NAFLD tissues. RNA-sequencing, mass spectrometry analysis, co-immunoprecipitation, in vivo and in vitro ubiquitination assays were used to elucidate the mechanisms of TRIB3-mediated HNF4α degradation. Molecular docking and co-immunoprecipitation analyses were performed to identify a cell-penetrating peptide that ablates the TRIB3-HNF4α interaction. RESULTS: TRIB3 directly interacts with HNF4α and mediates ER stress-induced HNF4α degradation. TRIB3 recruits tripartite motif containing 8 (TRIM8) to form an E3 ligase complex that catalyzes K48-linked polyubiquitination of HNF4α on lysine 470. Abrogating the degradation of HNF4α attenuated the effect of TRIB3 on a diet-induced NAFLD model. Moreover, the TRIB3 gain-of-function variant p.Q84R is associated with NAFLD progression in patients, and induces lower HNF4α levels and more severe hepatic steatosis in mice. Importantly, disrupting the TRIB3-HNF4α interaction using a cell-penetrating peptide restores HNF4α levels and ameliorates NAFLD progression in mice. CONCLUSIONS: Our findings unravel the machinery of HNF4α protein degradation and indicate that targeting TRIB3-TRIM8 E3 complex-mediated HNF4α polyubiquitination may be an ideal strategy for NAFLD therapy. IMPACT AND IMPLICATIONS: Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. However, the mechanism of HNF4α protein degradation remains unknown. Herein, we reveal that TRIB3-TRIM8 E3 ligase complex is responsible for HNF4α degradation during NAFLD. Inhibiting the TRIB3-HNF4α interaction effectively stabilized HNF4α protein levels and transcription factor activity in the liver and ameliorated TRIB3-mediated NAFLD progression. Our findings demonstrate that disturbing the TRIM8-TRIB3-HNF4α interaction may provide a novel approach to treat NAFLD and even other liver diseases by stabilizing the HNF4α protein.


Assuntos
Peptídeos Penetradores de Células , Hepatopatia Gordurosa não Alcoólica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Peptídeos Penetradores de Células/metabolismo , Simulação de Acoplamento Molecular , Fígado/patologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte/metabolismo , Proteínas do Tecido Nervoso , Proteínas Repressoras , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo
9.
Nutr Rev ; 82(3): 361-373, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37226405

RESUMO

Despite intensive studies for decades, the common mechanistic correlations among the underlying pathology of diabetes mellitus (DM), its complications, and effective clinical treatments remain poorly characterized. High-quality diets and nutrition therapy have played an indispensable role in the management of DM. More importantly, tribbles homolog 3 (TRIB3), a nutrient-sensing and glucose-responsive regulator, might be an important stress-regulatory switch, linking glucose homeostasis and insulin resistance. Therefore, this review aimed to introduce the latest research progress on the crosstalk between dietary nutrition intervention and TRIB3 in the development and treatment of DM. This study also summarized the possible mechanisms involved in the signaling pathways of TRIB3 action in DM, in order to gain an in-depth understanding of dietary nutrition intervention and TRIB3 in the pathogenesis of DM at the organism level.


Assuntos
Diabetes Mellitus , Proteínas Serina-Treonina Quinases , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Dieta , Proteínas Repressoras/metabolismo
10.
J Enzyme Inhib Med Chem ; 39(1): 2287990, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38062554

RESUMO

Doublecortin-like kinase 1 (DCLK) is a microtubule-associated serine/threonine kinase that is upregulated in a wide range of cancers and is believed to be related to tumour growth and development. Upregulated DCLK1 has been used to identify patients at high risk of cancer progression and tumours with chemotherapy-resistance. Moreover, DCLK1 has been identified as a cancer stem cell (CSC) biomarker in various cancers, which has received considerable attention recently. Herein, a series of DCLK1 inhibitors were prepared based on the previously reported XMD8-92 structure. Among all the synthesised compounds, D1, D2, D6, D7, D8, D12, D14, and D15 showed higher DCLK1 inhibitory activities (IC50 40-74 nM) than XMD8-92 (IC50 161 nM). Compounds D1 and D2 were selective DCLK1 inhibitors as they showed a rather weak inhibitory effect on LRRK2. The antiproliferative activities of these compounds were also preliminarily evaluated. The structure-activity relationship revealed by our compounds provides useful guidance for the further development of DCLK1 inhibitors.


Assuntos
Quinases Semelhantes a Duplacortina , Inibidores de Proteínas Quinases , Humanos , Quinases Semelhantes a Duplacortina/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
11.
Cell Chem Biol ; 30(12): 1601-1616.e6, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37939709

RESUMO

Type 1 IFN expression is critical in the innate immune response, but aberrant expression is associated with autoimmunity and cancer. Here, we identify N-[4-(1H46 pyrazolo[3,4-b] pyrazin-6-yl)-phenyl]-sulfonamide (Sanofi-14h), a compound with preference for inhibition of the AGC family kinase SGK3, as an inhibitor of Ifnb1 gene expression in response to STING stimulation of macrophages. Sanofi-14h abrogated SGK activity and also impaired activation of the critical TBK1/IRF3 pathway downstream of STING activation, blocking interaction of STING with TBK1. Deletion of SGK1/3 in a macrophage cell line did not block TBK1/IRF3 activation but decreased expression of transcription factors, such as IRF7 and STAT1, required for the innate immune response. Other AGC kinase inhibitors blocked TBK1 and IRF3 activation suggesting common action on a critical regulatory node in the STING pathway. These studies reveal both SGK-dependent and SGK-independent mechanisms in the innate immune response and indicate an approach to block aberrant Ifnb1 expression.


Assuntos
Imunidade Inata , Proteínas de Membrana , Proteínas Serina-Treonina Quinases , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas de Membrana/metabolismo , Animais , Camundongos , Células RAW 264.7
12.
Future Med Chem ; 15(5): 453-465, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013895

RESUMO

HIPK2 is a serine/threonine kinase, located in the nucleus, that was initially found to be able to phosphorylate p53 at Ser46 to promote apoptosis; it has been widely studied. It has been reported that HIPK2 can simultaneously regulate TGF-ß/Smad3, Wnt/ß-catenin, Notch and NF-κB pathways in the kidney to initiate inflammation and fibrosis, resulting in the development of chronic kidney disease (CKD). Therefore, inhibition of HIPK2 is strongly considered an effective method for the treatment of CKD. In brief, this review summarizes the progress of HIPK2 in CKD as well as the reported HIPK2 inhibitors and their role in different CKD models.


Assuntos
Proteínas de Transporte , Proteínas Serina-Treonina Quinases , Insuficiência Renal Crônica , Humanos , Apoptose , Proteínas de Transporte/antagonistas & inibidores , Fibrose , Rim , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Insuficiência Renal Crônica/patologia
13.
J Biol Chem ; 299(4): 104595, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36898579

RESUMO

The integrated stress response (ISR) is an important mechanism by which cells confer protection against environmental stresses. Central to the ISR is a collection of related protein kinases that monitor stress conditions, such as Gcn2 (EIF2AK4) that recognizes nutrient limitations, inducing phosphorylation of eukaryotic translation initiation factor 2 (eIF2). Gcn2 phosphorylation of eIF2 lowers bulk protein synthesis, conserving energy and nutrients, coincident with preferential translation of stress-adaptive gene transcripts, such as that encoding the Atf4 transcriptional regulator. While Gcn2 is central for cell protection to nutrient stress and its depletion in humans leads to pulmonary disorders, Gcn2 can also contribute to the progression of cancers and facilitate neurological disorders during chronic stress. Consequently, specific ATP-competitive inhibitors of Gcn2 protein kinase have been developed. In this study, we report that one such Gcn2 inhibitor, Gcn2iB, can activate Gcn2, and we probe the mechanism by which this activation occurs. Low concentrations of Gcn2iB increase Gcn2 phosphorylation of eIF2 and enhance Atf4 expression and activity. Of importance, Gcn2iB can activate Gcn2 mutants devoid of functional regulatory domains or with certain kinase domain substitutions derived from Gcn2-deficient human patients. Other ATP-competitive inhibitors can also activate Gcn2, although there are differences in their mechanisms of activation. These results provide a cautionary note about the pharmacodynamics of eIF2 kinase inhibitors in therapeutic applications. Compounds designed to be kinase inhibitors that instead directly activate Gcn2, even loss of function variants, may provide tools to alleviate deficiencies in Gcn2 and other regulators of the ISR.


Assuntos
Fator de Iniciação 2 em Eucariotos , Proteínas Serina-Treonina Quinases , Humanos , Trifosfato de Adenosina/metabolismo , Ativação Enzimática/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
14.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36835086

RESUMO

Pyruvate dehydrogenase kinases (PDKs) are serine/threonine kinases, that are directly involved in altered cancer cell metabolism, resulting in cancer aggressiveness and resistance. Dichloroacetic acid (DCA) is the first PDK inhibitor that has entered phase II clinical; however, several side effects associated with weak anticancer activity and excessive drug dose (100 mg/kg) have led to its limitation in clinical application. Building upon a molecular hybridization approach, a small library of 3-amino-1,2,4-triazine derivatives has been designed, synthesized, and characterized for their PDK inhibitory activity using in silico, in vitro, and in vivo assays. Biochemical screenings showed that all synthesized compounds are potent and subtype-selective inhibitors of PDK. Accordingly, molecular modeling studies revealed that a lot of ligands can be properly placed inside the ATP-binding site of PDK1. Interestingly, 2D and 3D cell studies revealed their ability to induce cancer cell death at low micromolar doses, being extremely effective against human pancreatic KRAS mutated cancer cells. Cellular mechanistic studies confirm their ability to hamper the PDK/PDH axis, thus leading to metabolic/redox cellular impairment, and to ultimately trigger apoptotic cancer cell death. Remarkably, preliminary in vivo studies performed on a highly aggressive and metastatic Kras-mutant solid tumor model confirm the ability of the most representative compound 5i to target the PDH/PDK axis in vivo and highlighted its equal efficacy and better tolerability profile with respect to those elicited by the reference FDA approved drugs, cisplatin and gemcitabine. Collectively, the data highlights the promising anticancer potential of these novel PDK-targeting derivatives toward obtaining clinical candidates for combatting highly aggressive KRAS-mutant pancreatic ductal adenocarcinomas.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Piruvato Desidrogenase Quinase de Transferência de Acetil , Bibliotecas de Moléculas Pequenas , Humanos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Pancreáticas
15.
J Enzyme Inhib Med Chem ; 38(1): 2166039, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36683274

RESUMO

Inhibiting a specific target in cancer cells and reducing unwanted side effects has become a promising strategy in pancreatic cancer treatment. MAP4K4 is associated with pancreatic cancer development and correlates with poor clinical outcomes. By phosphorylating MKK4, proteins associated with cell apoptosis and survival are translated. Therefore, inhibiting MAP4K4 activity in pancreatic tumours is a new therapeutic strategy. Herein, we performed a structure-based virtual screening to identify MAP4K4 inhibitors and discovered the compound F389-0746 with a potent inhibition (IC50 120.7 nM). The results of kinase profiling revealed that F389-0746 was highly selective to MAP4K4 and less likely to cause side effects. Results of in vitro experiments showed that F389-0746 significantly suppressed cancer cell growth and viability. Results of in vivo experiments showed that F389-0746 displayed comparable tumour growth inhibition with the group treated with gemcitabine. These findings suggest that F389-0746 has promising potential to be further developed as a novel pancreatic cancer treatment.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Humanos , Linhagem Celular Tumoral , Gencitabina/química , Gencitabina/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Pancreáticas/enzimologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Simulação por Computador , Neoplasias Pancreáticas
16.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614307

RESUMO

Recently, the oncogenic role of lemur tyrosine kinase 3 (LMTK3) has been well established in different tumor types, highlighting it as a viable therapeutic target. In the present study, using in vitro and cell-based assays coupled with biophysical analyses, we identify a highly selective small molecule LMTK3 inhibitor, namely C36. Biochemical/biophysical and cellular studies revealed that C36 displays a high in vitro selectivity profile and provides notable therapeutic effect when tested in the National Cancer Institute (NCI)-60 cancer cell line panel. We also report the binding affinity between LMTK3 and C36 as demonstrated via microscale thermophoresis (MST). In addition, C36 exhibits a mixed-type inhibition against LMTK3, consistent with the inhibitor overlapping with both the adenosine 5'-triphosphate (ATP)- and substrate-binding sites. Treatment of different breast cancer cell lines with C36 led to decreased proliferation and increased apoptosis, further reinforcing the prospective value of LMTK3 inhibitors for cancer therapy.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Linhagem Celular Tumoral , Estudos Prospectivos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Humanos
17.
Nature ; 615(7950): 158-167, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36634707

RESUMO

Despite the success of PD-1 blockade in melanoma and other cancers, effective treatment strategies to overcome resistance to cancer immunotherapy are lacking1,2. Here we identify the innate immune kinase TANK-binding kinase 1 (TBK1)3 as a candidate immune-evasion gene in a pooled genetic screen4. Using a suite of genetic and pharmacological tools across multiple experimental model systems, we confirm a role for TBK1 as an immune-evasion gene. Targeting TBK1 enhances responses to PD-1 blockade by decreasing the cytotoxicity threshold to effector cytokines (TNF and IFNγ). TBK1 inhibition in combination with PD-1 blockade also demonstrated efficacy using patient-derived tumour models, with concordant findings in matched patient-derived organotypic tumour spheroids and matched patient-derived organoids. Tumour cells lacking TBK1 are primed to undergo RIPK- and caspase-dependent cell death in response to TNF and IFNγ in a JAK-STAT-dependent manner. Taken together, our results demonstrate that targeting TBK1 is an effective strategy to overcome resistance to cancer immunotherapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Evasão da Resposta Imune , Imunoterapia , Proteínas Serina-Treonina Quinases , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Imunoterapia/métodos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Organoides , Fatores de Necrose Tumoral/imunologia , Interferon gama/imunologia , Esferoides Celulares , Caspases , Janus Quinases , Fatores de Transcrição STAT
18.
J Enzyme Inhib Med Chem ; 38(1): 2153841, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36637025

RESUMO

SGK1 is a serine/threonine kinase involved in several neurodegenerative-related pathways such as apoptosis, neuroinflammation, ionic channel regulation, and autophagy, among others. Despite its potential role as a pharmacological target against this kind of diseases, there are no reported inhibitors able to cross the BBB so far, being a field yet to be explored. In this context, a structure-based virtual screening against this kinase was performed, pointing out the deazapurine moiety as an interesting and easy-to-derivatize scaffold. Moreover, these inhibitors are able to i) exert neuroprotection in an in vitro model of AD and ii) block mitophagy in a PRKN-independent manner, reinforcing the hypothesis of SGK1 inhibitors as neuroprotective chemical tools.


Assuntos
Fármacos Neuroprotetores , Proteínas Serina-Treonina Quinases , Apoptose , Fármacos Neuroprotetores/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores
19.
Wien Med Wochenschr ; 173(5-6): 152-157, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36178637

RESUMO

BI2536 is potent inhibitor of polo-like kinases PLK1, 2, and 3. The inhibition of PLKs in nucleated cells induces apoptosis by perturbing the cell cycle with consequent engagement of mitotic catastrophe. BI2536 is being tested as chemotherapy in various phase I/II/III clinical trials. Erythrocytes do not have a nucleus; however, they may undergo programmed suicide with characteristic hallmarks including cell shrinkage and phosphatidylserine translocation to the cell surface. This particular death is baptized eryptosis. Our study explored whether BI2536 induces eryptosis. We used flow cytometry to access death in red blood cells. We analyzed the cellular volume, the intracellular calcium concentration, the cell surface phosphatidylserine exposure, and the ceramide abundance. In addition, we analyzed the effect of BI2536 on hemolysis. Our investigation showed that after 48 h of incubation with PLK inhibitor BI2536, erythrocytes lost volume and were positive for annexin­V without any effect on hemolysis. Cells also showed an abundance of ceramide and an increase of intracellular calcium. All these finding suggest that BI2536 provokes eryptosis in red blood cells, ostensibly in part due to Ca2+ entry and ceramide accumulation.


Assuntos
Eritrócitos , Proteínas Serina-Treonina Quinases , Pteridinas , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Humanos , Eritrócitos/química , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eriptose/efeitos dos fármacos , Pteridinas/farmacologia , Ceramidas/análise , Cálcio/análise , Hemólise/efeitos dos fármacos
20.
Eur J Med Chem ; 245(Pt 1): 114887, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36370549

RESUMO

Monopolar spindle kinase 1 (Mps1), a core component of the spindle assembly checkpoint (SAC), plays a crucial role in the transition of cells from mid-to late mitosis. As an attractive therapeutic target, inhibition of Mps1 induces cell cycle arrest and apoptosis in a variety of tumors, including breast cancer. However, early clinical development of Mps1 inhibitors remains unsatisfactory. Here, we designed and synthesized a new class of Mps1 inhibitors with 7H-pyrrolo[2,3-d]pyrimidine structure using a scaffold hopping approach. Structure-activity relationship (SAR) revealed that 12 is a potent Mps1 inhibitor (IC50 = 29 nM), which inhibited phosphorylation of Mps1 in vitro and in vivo. Treatment with 12 not only impeded proliferation of breast cancer cell lines, but also induced cell cycle arrest and apoptosis of MCF-7 and 4T1 cells. 12 suppressed tumor growth in vivo, and no obvious toxicities were observed. These results demonstrated the potential of Mps1 inhibitor 12 for the treatment of breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Pirimidinas , Feminino , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Proteínas de Ciclo Celular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Linhagem Celular Tumoral , Desenho de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...